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ABSTRACT

In previous PRTN's [l], [2], we have restricted ourselves to

consideration of antimultipath techniques for binary signalling.

Alternative techniques are available when M'ary signalling is used. We

consider the M'ary case here. In particular, we are concerned with the

relative performances and complexities of binary and M'ary antimultipath

receivers that must operate in urban/suburban multipath.

Our conclusion is that the hoped for simplicity of certain high rate

(1 1 Mbps) M'ary systems is not achieved because of so-called correlation
noise. Thus, binary and (say)16'ary systems are about equally complex

and have more or less equivalent performances. The choice between them

must be made on other bases, e.g., interoperability and bandwidth

considerations.
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I. Introduction

,In previous Packet Radio Technical Notes [1], [2], we have restricted

ourselves to consideration of antimultipath techniques for binary signalling.

We have seen that, for typical urban multipath spreads (5vps), the attemmt-<

to achieve megabit-per-second (Mbps) rates forces us into the complexity

of estimator/correlator receivers -- realized as RAKE or DRAKE structures

driven by a self-adaptive multipath estimation module. /Even with such

complex receivers, we have found that multipath-induced intersymbol

interference takes a toll of several dB of transmitter power.I

An alternative approach is to use M'ary signalling to avoid intersymbol

* interference. The idea here is to increase the signal duration to the

point where it exceeds the multipath spread, while holding the bit rate

constant. This, of course, entails using larger-than-binary alphabets.

For example, if a rate of 1 Mbps is required, and a multipath spread of

4 Ws is assumed, then the signal alphabet must contain at least 24 = 16

signals of duration 4 ps or more.

It is not clear whether using such large signalling alphabets

constitutes an advantage. While we might avoid RAKE-like receivers and

be able to use simpler post-detection integrating (PDI) receivers, we might

also be forced into another sort of complexity -- banks of 16 or more

matched filters in all receivers, and the same number of signal generators

in all transmitters. It might be a case of "out of the frying pan, into

the fire." And, even if the fire is less complex than the frying pan,

there is no guarantee that, say, an M'ary PDI receiver will perform as

well as a binary RAKE receiver.

On the other hand, in the code-division multiple access (CDMA) context,

40 larger-than-binary alphabets may have advantages unconnected with anti-

multipath considerations [3]. Further, in an M'ary system Mbps rates can

be achieved with a given processing gain TW by using a factor of 1/log 2M

lessbandwidth than in a binary system, a factor that also relieves the

timina/sampling accuracies required.

*n the present report, we analyze and simulate the performances of

several M'ary systems in the multipath environment, and compare them with

those of binary systems.

In Section II, we analyze "standard" M'ary systems, in which fixed

M'ary alphabets of signals are used. Typically, for urban/suburban

multipath having spreads of 4 us, and for signalling rates of about 1 Mbps,
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we need 16'aryor largeralphabets to avoid multipath-induced interference

with such a system.

In Section III, we consider so-called M'ary commutation codes, in

which the alphabet changes with time. The idea of these codes is to

reduce the size of the signal set and the number of associated matched

filters by deleting from the signal set all recently used signals for as

long as it takes for their multipath responses to die out. A typical

commutation code for urban multipath using a 1 Mbps rate, suggested by

Leung [3], would be 5'ary. Each signal would last 2 ps; only four signals

would remain in the code at any time, the most recently used signal being

excluded.

The analyses of Sections II and III are much oversimplified. We

therefore, in Section IV, give the results of realistic simulation

experiments conducted by M. A. Kamil, in which M'ary systems with standard

and commutation codes are evaluated.

The results of this work can be summarized as follows:

- Despite the promise given by the theoretical analysis that M'ary

PDI (say M = 16) will be be an effective high-rate antimultipath

technique involving much less system complexity than binary RAKE/

DRAKE, simulation shows that it performs quite poorly. The

discrepancy between theory and simulation is due to an oversimpli-

fication in the theory, which ignores crosscorrelation noise. This

* type of noise becomes a predominant factor at large SNR, and

greatly limits M'ary PDI performance.

- Standard 16'ary RAKE/DRAKE operates about as well as binary DPSK

RAKE/DRAKE, although with much more system complexity.

• 5'ary commutation codes perform neither as well as binary DPSK

nor even as well as standard 16'ary codes, whether PDI or RAKE/

DRAKE receivers are used.

'The fundamental conclusion we come to is that we can do no better in

urban/suburban multipath at high ( 1 Mbps) rates than by using the self-

adaptive estimator/correlator structure of,.M that uses binary DPSK

signalling and RAKE reception. The choice between, say, 16'ary "orthogonally"

keyed RAKE and binary DPSK RAKE lies simply in the following issues:

.Is Lhe estimator/correlator of [2] for binary signalling (which

must unscramble intersymbol interference) so much more complicated

than the estimator/correlators for 6'ary signalling (which have

-2-
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no intersymbol interference to consider),it outweigh the

natural simplicity of a binary transmitter and receiverJf'pH; "' _,,

* ° Is the 4-to-l reduction in bandwidth of 16'ary compared to binary

(for a given TW) or the 4-to-l increase in TW (for a given

bandwidth) of substantial importance?

What are the implications of cross-correlation noise for 16'ary and
* binary systems in the context of CDMA or, equivalently, of inter-

operating systems?*

The answers to these questions are not entirely clear. Our intuitive

guess is that in most situations the binary system would be preferable.

In what follows, we assume that the reader is familiar with [1] and

[2].

As was the case with other PRTN's in this series, the work herein

is heavily based on simulation programs developed under a sequence of

grants from the National Science Foundation to the University of

California (Berkeley), the most recent being Grant ENG 21512; a debt
of gratitude is due NSF for its continuing support of the work at UCB.

The author is also grateful to his doctoral student, M. A. Kamil, for

having programmed the calculations leading to Figures 2-6 and the

simulations leading to Figures 11-24; Kamil's work was supported

by SRI under the ARPA Packet Radio Project.

0

0

0

Systems using the same frequency band but different spread-spectrum codes.
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11. Approximate Performance Analysis: Standard M'ary Systems

2.1. Transmitter/Receiver Structure

* We assume an M-ary transmitter that transmits one of M signal

waveforms every T seconds. The waveforms are assumed to be unformly

quasi-orthogonal. That is, if we let si(t), i = l,...,M, 0 < t < T, be

the waveforms, and suppose that they have equal energies, i.e.,

T s2(t)dt : Vi, (1)

then we assume that

T
iJ) A j' si(t) sj(t-T)dt << & (2)

03

* for all i j and all T. Further, we assume that each waveform has a

"good" autocorrelation function, i.e.,

Tf si(t) si(t-T)dt << (3)

1

for all i and for all T > V , where W is the signal bandwidth.

The receiver is specified to consist of M matched filters, one matched
to each of the signals, followed by envelope detectors and decision

circuitry. The outputs of the envelope detectors, after the isolated

transmission of the kth signal in the interval (O,T), look like the

waveforms in Figure 1.
Figure 1 is drawn for the casp of large output signal-to-noise ratio.

The waveforms depicted for the outputs of all but the kth filter consist

of the cross-correlation functions of the form (2), with k t j; there is

one such function present for each of the paths. In addition, the wave-

forms of Figure 1 have a random noise

The kth filter output consists of correlation peaks in (T,T+A), one

for each path, plus "tails" of the kth autocorrelation function (i.e.,

(2) with i = j = k), plus random noise. Note that if another waveform

I.e., no transmission precedes or succeeds this transmission.
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had been transmitted in the preceding interval (-T,O), multipath peaks

would appear in (0,4) at the output of the corresponding matched filter.

* Thus, when ' < T as shown, even if the same signal should be transmitted

twice in a row, the correlation peaks induced in the associated filter

output by the two successive transmissions would not be interleaved as,

e.g., in Figure 18 of [I]. That is, intersymbol interference will be

* small and -- as discussed in [1] -- a PDI receiver seems viable.

The decision circuitry can consist of any of the types discussed in

previous reports [1], [2]: a "first path" (FP) receiver, which locks onto

the first above-threshold path; a "largest path" (LP) receiver, which

0 locks onto the strongest path; a post-detection integrator (PDI), which

integrates each detected filter output from T to T+A; a weighted post-

detection integrator (WPDI); RAKE, which estimates path delays and

strengths, samples the filter outputs at the estimated path delays, and

*0 combines the samples with appropriate strength-related weights; or DRAKE,

which operates like RAKE, but combines all samples with equal weights.

In all cases, identical operations are performed on all M filter outputs,

and the operation leading to the largest result causes a decision in

favor of the corresponding signal.

2.2. Error-Probability Analysis

Ideally, we should derive error-probability expressions for all of the

decision mechanisms listed above, and then compare them with each other

and with corresponding results for the binary case, given in previous

reports. Unfortunately, Mary error-probability analysis is not a simple

matter, so we shall concentrate on approximate results that we can get

quickly from well-known starting points. In particular, we shall lirit

ourselves to the analysis of the FP, PDI and DRAKE receivers.

2.2.1. FP Receiver

The error probability for a non-coherent M'ary system operating

through a single, nonfading path is well known to be (see [4],[5]):

M klp()() lM k ( M )  0

1IM 2e (4)
k=2

where L is the energy given by (1) and N0 is thewhite noise power(M)0 '  niae htti ro
density in the channel. The notation P[EI ( ndicttes that this error
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probability is for the one-path channel and for the full M'ary (log 2M-bit)

character (we discuss its relationship to the bit error rate below), and

that it is a function of PS, which we subsequently make a random variable.

Note that for M = 2 we have the very familiar

p()(9 = 1 e8/2N 0 (5

In order to apply (4) to the FP receiver, we make three assumptions:

* The receiver always locks onto the first "strong" (or above-

threshold) path, which is usually the LOS path. (This is not

as satisfactory as locking onto the strongest path.) We assume

that the identity of this path does not change with time.

* Path capture is perfect, i.e., the receiver samples the path

at the precise instant of the signal peak.

-The (auto- or cross-) correlation tails, due to other paths,

at the captured time instant are negligible in all M matched

filter outputs. That is, at the sampling instant, the

multipath-induced interference in all filter outputs is

dominated by the channel noise.

Under these assumptions, the FP receiver performs exactly as if

there were only one path. If this path is Rayleigh fading, then the

energy received by it has an exponential distribution:

1 e- ' , >'o (6)

where F is the mean energy. The probability of error for the time-

capture receiver is obtained by averaging (4) over (6):

* o() 1 (-) (1M 1 (7)
k=2 1

k N0

Again, for M = 2, we obtain the familiar result

( (2) - 1 (8)
Ell

I 2 +--
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2.2.2. DRAKE Receiver

We idealize the DRAKE receiver by assuming that:

• • The delays of all paths have been estimated with perfect accuracy.

. At each path sampling point the (auto- and cross-) correlation

tails from all other paths are negligible in every filter's

output. (See further discussion, below.)

Supposing that all paths are Rayleigh distributed with equal mean-2
square strengtns, the outputs of all DRAKE combiners are X variables with

2K degrees of freedom, where K is the number of paths present (hence, the

nuiwuer of D RA1F'7 tas turned on). The combiner output corresponding to

the svmbol being Sent has energy due to both signal and noise; all other

comb'necs hcve output energies due (approximately) to noise alone. It is

easily/ shown that the orobability of a character error is given by the

express 10n

(1 + y I- r-]N M-1lI ,- to-be zK-~I J~z Mldy Kj(9)

-l

0_ P '1(-l)! ("K-l

K ___

1e 
dz

Hah, 4 has, shown P" ' to Le
LE,K

" * - l K uIj

M-11 O (-r-l ) (K-1

"r, I (=J KK~l  -rII Jix
C 10

L' + (K -11,. '. × -: ,

r - 12)
x 0 (,I sewhre

0t



and

CO,0  = 1

S , j  I/j! (13)

Cr,l r

SCr, 0  1

As expected, (1) reduces to (7) for K = 1.

2.2.3. Post-Detection Integrating (PDI) Receiver

In [1] and [2], theoretical and simulational performance curves for

PDI and DRAKE were given for binary, DPSK signalling in the low-rate

(no intersymbol interference) case. As expected, PDI performed worse

than DRAKE, since PDI is equivalent to a DRAKE delay line with all taps --

even those with only noise present -- always turned on. The margin

between PDI and DRAKE was shown to be between 2 and 5 dB, depending on

the characteristics of the multipath (geographical area) and whether

theoretical or simulational curves were compared.

In estimating the performance of PDI for M > 2, we assume that its

loss compared to DRAKE is the same for all M, since "turning on the

spurious taps" adds the same amount of noise to each of the M outputs,

regardless of the value of M. That is, it would seem that going from

DRAKE to PDI effectively increases the system noise level by a given

amount, regardless of the value of M. We therefore estimate that, in

theory, the performance of M'ary PDI should be 2-5 dB worse than M'ary

DRAKE.

2.3. Comparison of Systems

There are at least two ways to compare the performances of systems

with different values of M. Both have validity under particular

circumstances.

In one case -- which would apply in PCM systems and in packet

systems not having error correction -- the probability of a word error

Of course, the additional noise changes the distributions of the delay-
line outputs, thus affecting the error probabilities differently for
different M. We ignore this effect, which should vanish for large 4.

-9-



is important. In this case, we rank systems by comparing the energies

they require per bit in order to achieve equal probabilities of error for

an N-bit word. Thus, for example, if N = 7 and we were comparing Wary

systems with M = 2, 16 and 64 (1, 4 and 6 bits per character), we would

compare the energies per bit they require when

* (1-P2)64 = (1-P16 )8 = (1-P64 )2  (14)

where PM is the probability of a character error in the M'ary system.

Notice that if decoding of M'ary cnaracters into binary sequences is

* performed by the systems, we are not concerned with the number of binary

errors in an N-bit decoded word; a single error in N bits is adjudged

as severe as N errors, for each would cause a word error.

An alternative method of comparison is more important for systems

* with error correction. In such systems, a few isolated bit errors may

be correctable, so we cannot equate all patterns of errors in the decoded

binary sequences. What we need here is an evaluation of the probability

that an individual bit in the decoded sequence is in error. Even if

* such an evaluation were always easy to do, comparison of systems in this

case might still be a problem, since there is no guarantee that the

decoded bit sequence for each system has independent bit errors.

We assume for the second method of comparison that the M'ary signalling

* schemes used are such that all M'ary character errors are equally proable,

i.e., that any character in error is equally likely to be any character

but the correct one. In that case, we can use a formula of Viterbi [6],

which says that individual bit errors in the decoded bit stream are

* independent and have probability

P M P(M) (15)
~EB= 2TMWi}T E

where p M) is the M'ary character-error probability. Note that, for

large M, (MB 1 ) This says that when an M'ary character isEB 2 E
received incorrectly, about one-half of the (log 2M) bits in the binary

sequence into which it is decoded will be in error.

It is not always clear which of tne two methods of comparison is

preferable. Fortunately, for the anti-multipath under consideration here,

the difference between the two methods is not great, amounting to 1 dB

or less of transmitter power.

* -10-
-LO



2.4. Results

The character error probability for the FP receiver (P(M) of (7)
-(M *

* or (10)) and for DRAKE (P(M) of (10)) is plotted in Figures 2-6, as
E,K

a function of' b b/No, where F.b = 8/1og 2M is the average received

energy per bit ( is the average received energy per character). Each

figure is for a different value of M, with K as a parameter. We shall

use these curves later to construct theoretical plots of the performance

of M'ary systems in urban/suburban multipath. However, we shall convert

character error probability to bit error probability using (15).

Programming done by M. Kamil.
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III. M'ary Commutation Codes

3.1. The Concept of Commutation Codes

We analyze here two types of commutation codes:

• Commutation among N M'ary signal sets (NxM codes).

* Commutation among subsets of an (M+N)'ary code ((M+N) or

Leung codes).

The purpose of commutation is to delete from use any recently transmitted

signal or signal set which is or might be still causing a multipath-

channel response. This should allow the use of a PDI receiver.

For example, consider a 4x2 PSK code designed for l-Mbps operation

through a channel with a 4-ps multipath spread. The system would commute

cyclicly through the four signal pairs S 1±2' +S3' ±S4 and the outputs

of the four associated matched filters.* If Sit S2 9 S3 , S4 are uniformly

*0 mutually quasi-orthogonal in the sense of (3) and each is of duration

1 iis, then the multipath ringing at the output of filter #1 in response

to +S would be over before S1 was used again, and the same would be true

of filters #2, 3 and 4. Thus, we would avoid the interleaving of

multipath responses to successive symbols that is characteristic of a

high-rate binary system using a single signal pair +S (see Figure 18 of

[1]), and we should be able to use PDI.

Again, consider a (4+1) code as proposed originally by Leung. Here,

one commutes among five mutually uniformly quasi-orthogonal signals, each

of 2- is duration. On each transmission, the transmitter encodes two

source bits into a signal chosen from only four of the five signals,

excluding from the signal set that signal used just previously. At the

receiver, there is a bank of five matched filters, but none can respond

twice in a row to its own signal. Hence, each filter can allow a full

4 ,is for its multipath response to die out before it is hit again, thus

avoiding intersymbol interference and allowing use of PDI. As we shall

note, one has a choice here in receiver design: to observe the outputs

of M filters (not including that corresponding the last detected signal,

which might not be the same as the last transmitted signal), or to

observe the outputs of all M+N filters on each reception. We shall discuss

Alternatively, each binary signal set could be an orthogonal rather than
in antipodal pair, hut this would require twice the number of matched
f ilters.

-17-
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the relative merits of these two approaches.

M+N and MxN codes have the following relative advantages and

* disadvantages:

• MxN codes generally require larger signal sets (hence larger

numbers of matched filters) than M+N codes; see Section 3.2.

* Synchronization of signal sets at the transmitter and receiver

is more difficult for M+N systems than for MxN systems. For

MxN systems, the sequence of signal sets is fixed, and

synchronization can be achieved through a separate synchronizing

* signal or by observing the outputs of the matched filters to

establish the current phase of the sequence. In M+N systems,

the sequence of signal sets depends on the very data sequence

being transmitted. One must make N correct decisions in a row

* to know correctly which set of M signals will be used next.

Otherwise, errors can propagate. See Section 3.3.

" Because of the error propagation feature just noted, M+N codes

tend to perform more poorly than MxN codes.

In the remainder of this Section, we explore the characteristics

of commutation codes.

3.2. Minimization of the Total Number of Signals Required

As indicated in [1] (see, e g., Fig. 18 of that report), if a

signal's duration is T and the multipath spread is A, intersymbol

interference due to multipath is completely avoided if no signal is

repeated less than A+T seconds after its most recent transmission. In

practice, this minimum allowable interval can be reduced to A seconds,

since only low-level auto-correlation sidelobe interference between

successive transmissions of a signal will then occur (see Fig. 18 of

[1]). We note that whether A or A+T seconds is allowed, cross-correlation

noise due to the response of filters to signals to which they are not

matched will be almost equally severe. Thus, allowing A seconds between

repetitions of a signal is adequate; we henceforth use this spacing.

Let L rfl, where rxl is the smallest integer greater than or equal
to x. In the context of the commutation codes we have been discussing,

we see that intersymbol interference in a matched filter's output can

he virtually avoided (except for the low-level autocorrelation sidelobe

-18-



noise) if repetition of a signal is prohibited for L-l succeeding

transmissions. For example, if T = I .is and A = 4 ps, no signal should

be repeated for [] - I = 3 transmissions after it has been used.

Let each transmission consist of a choice from an M-ary signal set.

MxN codes require N = L signal sets, for a total of MN = ML signals.

M+N codes require a single signal set with M+N = M+(L-I) signals,

respectively. The question arises: is there an optimal value of M

that minimizes the total number of signals required?

Let R be the data rate in bps. Then the signal duration is
lg 2M RAl

T R and L = F- . Thus, we must minimize

QMxN(M) = ML = M I- RA (16)
QMXN(M)1lo2M,

for MxN codes, and

QM+N(M) = M + L - 1 = M + Io-MI - 1 (17)

for M+N codes.

The minimization problem can be solved by letting QMxN and QM+N

be replaced by continuous functions of M:

QMxN(M) AR. M (18)

QM+N (m) i + Rog2 1 (19)

102

We then find the minima of each of these functions with respect to M,

investigate the two integer values of M that bracket the minimizing M,

and use the best of these in (16) and (17).

The minimizing M's for (18) and (19) satisfy

dQMxN RA 1o92e(

dM log 2M log2M 0 (20)

and

dQM+N  RA log 2e- -= 0 (21)
dM (log2M)

2M
-19-



respectively. Of these equations, (9) has an explicit solution, viz.,

Mopt = e = 2.718.... for which QMxN(Mopt) = 1.884 RA. For the neighbor-

* ing integer values M = 2 and M = 3, QMxN takes on the values QMxN(2)

= 2 RA and QMxN(3) = 1.893 RA, respectively, which are plotted as

broken-line curves in Figure 7. The minimum number of signals required

for MxN codes are, correspondingly,

QMxN(2) = 2FRAI (22)

and

QMxN(3) = 3r0.631 RA] (23)

In Figure 7, we have shown for each integer R the preferable of

(22) and (23), i.e., the smaller of the two. In case of a tie, the

preferable code is the one that has the larger recycle time
NT=- RA-I O~g2M

NT= loM R ; for example, when RA = 3, (22) and (23) are both

equal to 6, but NT = 3/R for M = 2 and NT = 3.17/R for M = 3, so the

(3x2) code is judged better than the (2x3) code.

Note that the optimal MxN oscillates between binary and ternary

sets as RA varies. In practice, binary sets are more desirable, and we

would normally operate with one, even if slightly non-optimum. Thus, in

Figure 7, we would normally use the 2x4 and 2x7 codes rather than the

3x2 and 3x4 codes, respectively.

Solution of (21) involves a transcendental equation, which we have

solved numerically. In Figure 7, we have plotted QM+N(Mopt) as a

function of RA. By investigating the integer values of M that bracket

the solution of (21), we can then find the best M+N code, i.e., the best

M-ary code with N replacement signals such that M+N = FQM+N(Mopt)l. Here

"best" again means "maximum recycle time, NT = RA -_l1 1 M For-1 log2 M R

example, when RA = 4 the solution of (21) is M 2.70, for which

QM+N = 4.49. For M = 2, the recycle time is 3/R. For M = 3, the recycle

time is 3.17/R, whence the (3+2) code is judged the better. We have

shown the best codes for each integer RA in Figure 7.
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Note that the best M+N codes do not always have M = 2r, r an
integer. Since M = 2r is often desirable, we have also shown in Figure 7
the best such code(s). For example, for RA = 4, the recycle times for
M = 2, N = 3 and for M = 4, N = 1 are 3/R and 2/R, respectively, so the

(2+3) code is listed under the optimal (3+2) code as the best (2r+N) code.

On the other hand, for RA = 5, the optimal (3+3) code has a recycle time
of 4.75/R, while the (2 r+N) codes (2+4) and (4+2) both have recycle times

4/R; both are shown in Figure 7.

Note that MxN codes generally require very many more signals than
M+N, codes; in our simulation experiments we restricted ourselves to the

latter.

33. Performance Analyses

3.3.1. MxN Codes

it has been shown in [8] that coherent reception of the binary-PSK
c N2xN code set i+S i i l , where Si and S. are uniformly orthogonal (i/j),

leads to approximately the same performance for RAKE as for a fixed

binary PSK code set. One can guess that the same result holds for DRAKE.

These results hold for either L < T or A >> T, but in the latter case
channel estimation is vastly simpler for 2xN codes than for fixed binary

As discussed in [I], the urban mobile channel is not amenable to
coherent reception, and we there resorted to differentially coherent

reception with DPSK. However, commutation codes will not support DPSK,

so we i nst now change to orthogonal keying. We can therefore conjecture

that use of orthogonal keying witii 2xN codes will lead to a performance

Lu t JB worse than the DPSK results of [1], for both A < T and A 2> T.
On the other hand, PDI reception will not work at all for a fixed

rode set wh(rt A ;> A . Commutation codes allow use of Pf0I when A :> T.
,Ie conjecture that orthogonal 2xN codes with PDI will lead to performance

about 3 dB worse than the A ' T PDI results of [1], and somewhat
vaorse than this for ,, > T.

3.3.2. M+N Codes

The situation with M+N codes is much more complicated. As
previously indicated, errors occur not only because decisions on current

q n i-lay be in error, but also because errors on previous signals
,,ay~i Frunagdte, i.e.. cause errors in the current s inal-to-symbol decoding
t a b I e.
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Consider, for example, a (2+1) code, consisting of three signals

A, B and C. Signal-to-symbol relationships can be shown in a state

diagram as in Figure 8. Note that in neither of these codes can a signal

follow itself. However, code #1 seems to have an advantage over code #2

since, in the former, reception of signal A or C results in an output 0

or 1 respectively, independently of whether an error occurred on the

decision concerning the previous signal. That is, if (say) AC is sent

and BC is decided upon at the receiver, an error may have occurred in

decc-ing B, but not in decoding C. On the other hand, in code #2, errors

can always propagate. The AC - BC error just discussed can cause errors

not only in the decoding of the erroneous decision B, but also in the

decoding of the correct decision C.

Analysis of M+N codes -- i.e., evaluation of their error probability

performances -- is extremely complicated, and involves such questions

as:

1. Are cyclically symmetric (e.g., (2+1) code #2 above) or

asymmetric codes ((2+1) code #1) better?

2. Although no signal can be repeated for N = [T] -1 transmissions,

is it better to allow decision among the complete signal set or not?

For example, in (2+1) code #1, suppose A is sent and C detected in

error. On the next transmission, an M+N receiver might be constrained

to look only at the outputs of the detectors matched to B and A,

since the receiver assumes that C cannot happen again. If C is now

actually sent (corresponding to sequence AC or data bit 1), the

receiver will have to decide between matched filter outputs A and B,

neither having signal, leading to a probability of error close to

-23-



l2" (In fact, in the case of multipath, since detector A is still

responding to the previous transmission of A, the present decision

* will be biased toward A or a data bit 0; this will make the error

probability greater than .)

On the other hand, if the receiver never excludes a signal

from consideration, it always makes a ternary decision (in the

* (2+1) case) rather than a binary decision. In the previous example,

when AC is sent and C? is to be decided, the receiver decides among

A, B and C on the second transmission. Since both detectors A and

C will have signal (in the multipath case, where detector A is still

* responding to the previous signal), the choice will be largely

between these two, but C is highly likely to win, leading to output

data bit 1. Thus, in this example (AC-*CC), error recovery is

afforded with high probability. The question is whether more or

fewer errors occur on the average using ternary rather than binary

decisions in the (2+1) code case (M+N'ary rather than M'ary in

general). The question is greatly complicated by the nature of the

multipath channel and the choice of detector (RAKE or PDI).

The questions just outlined are complex and will likely not yield

to analysis when a realistic channel model is assumed. We show in Section

4 the results of a set of simulation experiments that definitively answer

the questions. In the remainder of the present section, we analyze the

(2+1) codes of Figure 8 for the one-path additive Gaussian channel, so
as to try to obtain some insight into questions 1 and 2.

3.3.3. Simplified Analysis of the (2+1) Cude
We first analyze (2+1) code #1. Here we can distinguish three cases:

Case 1: Binary decisions between the two signals that were not
decided on in the previous interval (i.e., if A is the previous

decision, the present decision is between B and C).

Case 2: Ternary decisions with BB called an error.
Case 3: Ternary decisions with BB always decoded as a 1.

A convention must be adapted that a detected sequence AA is decoded as
0, CC as 1, and BB either as 0 or 1.

-24-
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Case I:

We first calculate the probability PES that an isolated signal is

erroneously detected. There are three ways of making such an error. Thus

PES = Pr[previous decision correct] Pr[present decision erroneous]

'- Pr[previous decision erroneous and is present signal]

+ Pr[previous decision erroneous and is not present signal]

•Pr[present decision erroneous] (24)

Assume, in evaluating each term, that a present error is independent of

the previous transmission; e.g., assume a single-path channel with

additive white Gaussian noise. Then (24) becomes

P :S (1-P ES 2)+ 1 + Kp(2) (25)
ES ESE + ES 2 ES*2 E0

where p(2) is the probability of error on a binary decision between two
E

signals, one of which is actually present. Solving for PES:

* 2P(2 )
P E 2P(2)  (26)
ES l+p(2 ) p(2) E

E ~E -0

PES is the probability of an erroneous decision on a signal. We now

must calculate the probability of erroneous decoding of a symbol, based

on the decoding graph #1 of Figure 8; this is the probability of error on

the present bit. There are three ways of erroneously decoding a bit.

PEB = Prob(NE, prey. sig.) Prob(E, pres. sig.INE, prey. sig.) (27)

•Prob(no decoding correction INE, prev - E, pres.)

+ Prob(E, prey.) Prob(NE, pres. IE, prev.) Prob(no corr. jE - NE)

+ Prob(E, prev.) Prob(E, pres. E, prev.) Prob(no corr.IE - E)

where E = error, NE = no error.

I.e., no intersymbol interference.
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We have:

Prob(NE, prey. sig.) = (I-PES) (28)

Prob(E, pres.INE, prey.) = P(2) (29)E

Prob(no decoding correctionINE, prey.; E, pres.) = 1 (30)

0Prob(E, prey.) = PES (31)

Prob(NE, pres.fE, prey.) (32)

= Prob(NE, pres..IE, prey. =pres. sig.) Pr(E, prey. =pres. sig.)

+ Prob(NE, pres.JE, prey. ~'pres. sig.) Pr(E, prey. pres. sig.)

=oj+ (l-P(2~) )- 1(33)

0 Prob(no dec. corr. jE -NE) = (34

since from diagram #1 of Figure 8, if the present signal is received

correctly and is A or C, the present bit is decoded correctly; while, if

0 a present B is received correctly and prey. sig. is received incorrectly,

no decoding correction will take place.

We also have

* Prob(E,pres.IE, prey.)

= Prob(E,pres.fE,prev. =pres. sig.) Pr(E, prey. =pres. sig.)

+ Prob(E, pres.IE, prey. pres. sig.) Pr(E, prey. pres. sig.)

= 1.1 + p()j(35)
Z E 2

Prob(no. dec. corr. lE -~ E) = I Prob(dec. corr. jE -E)

7 (36)

See Appendix.
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Using (26) and (28)-(36) in (27), we finally have

+ p~s(l~2)(2 + l+P)2

i (2) 2  )). E + E 7

1+P(2) E 1~EE )'6- .2 2 T_

= ~ - (2) -

E 3() 7230)P EB 3 2 ) +  2 PS -'E2 ' E(

jp+) 12E

* Case 2:

Here, ternary decisions are made, so AA, BB, and CC are possible

decision sequences. For code #1, AA - 0, CC - 1, and we call BB an

error. The probability of error PES of an isolated signal is now just

p(3) the probability of error on a ternary decision among three signals,

one of which is present. The probability of bit error is still given by

(27), but now errors on successive signals are independent, e.g., Prob

(E, pres.INE, prev.)= Prob(E, pres.) = P (3 ) It is simple to show that
E

* (27) becomes

P (_p())p(3).5 + p(3) (l_p(3)).l + [p(3)] .2"38

PEB E(l-P 3 )) " "[ (38)

In (38), the factor of 1 in the second term is that given by (34); the
2 n the

factor of i in the third term is given in the Appendix; and the factor of
5/6 in the first term comes from the calculation

Prob(no dec. corr.INE - E) 1 1 - Prob(dec. corr.INE - E)

1 - Prob(prev. sig. = A (or C)) Prob(pres. sig. =B)

•Prob(pres. decision = A (or C)Ipres. decision erroneous)

22 1 1 5 (39)

where, as before, we assume no intersymbol interference, e.g., a single-

path channel with additive white Gaussian noise.

Manipulating (38), we have

-27-
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P 3 p3] 2 , 7 p(3) (40)
E 6E (3) 6 E

Case 3:

Case 3 differs from Case 2 only in always decoding BB as a 1 instead

of calling it an error. We have:

6 - Pr(prev. sig. = B) Pr(pres. sig. =C)

*Pr(pres. decis. = BIpres. decis. erron.)

1 33 (41)

Pr(no dec. corr.;E NE) = 1 - - Pr(CB-+BBjprev. decis. erron.)
03

-l 2 1 1 1_ (42)

Pr(no dec. corr. IE - E) 4 (43)

Then (see (38))

P , (I-p 3))p(3).3 + p(3)(l_m 3)). + 3) 15 (44)

P(3) _9 p3)]2  p (3)
E 22 E (3) -

Next we analyze (2+1) code #2. Here there are only two cases:

Case l: Binary decisions between the two signals that were not

decided on in the previous interval.

(ase_2: Ternary decisions with AA, BB, and CC declared as errors.

Here, (30) still holds, while (34) becomes

Pr(no dec. corr. E - NE) = 1 (45)

and, from the Appendix, (26) becomes

As in (39).

As in (34).

*Se Appendix.
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01

Pr(no dec. corr.IE - E) = _ (46)
4

* (26), (27)-(29), (31)-(33) and (35) remain the same, so (37) changes to

I2 2 )

Here, (39) becomes

Pr(no dec. corr. NE E) 1 (48)

while (45) holds and from the Appendix

Pr(no dec. corr4 1E E) = j (49)

Cas 2:

s0 (38) becomes

=rn de corI"E -"2 (8

= (I-P(3))p(3. + p(3)(1 p(3S2).l + [p(3)3  2

2P(3) _ 3P ( (50)
E 2 E p3)_-)

E

3.3.4. Discussion

When we compare (37) with (47) and (40) with (50), we see that (2+1)

code #1 is better than code #2, as expected, so we henceforth eliminate

code #2 from consideration. Also, as expected, case 3 of code #1 --

eqn. (44) -- is better than case 2 -- eqn. (40). Thus the comparison

is between cases 1 and 3 of code #1:

Binary decisions: P p 2 p(2) (37)

(2+1) E (2)_12

E
code v Ternary decisions: PEB3 ( 4

~~~p(3)_, 0  (4
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From our discussion in Section 3.3.1, we estimate that MxN codes

will operate approximately as well as similar fixed codes -- exactly as

well for the simple one-path, additive-noise analysis just analyzed.

Thus, for 2xN codes,

= p(2) (51)
EB E

A comparison of (37), (44) and (51) for orthogonal codes in the assumed

one-path, additive white Gaussian noise case is shown in Table 1; an

incoherent-phase channel is also assumed. We see that the binary and

TABLE I

Probability of Bit Error

(2+1) code #1 2xN code**

Ternary decis. Binary decis. (Bin. decis.)

3 z.18 Z.19 10

7 z.03 z.04 z.02

10 z.007 z.006 ;.003

ternary decision strategies behave comparably, although ternary decisions

have a slight edge. (What the latter loses in having to compare three

alternatives, it gains in the catastrophic case where the binary strategy

would have to choose between two alternatives neither of which is correct).

The 2xN codes are somewhat better, but in general require a larger total

number of signals.

We stress that the analysis in this section is simplistic. When

* niultipath-induced intersynbol interference is present, the (2+1) ternary

strategy will probably deteriorate rapidly, at least for a PDI receiver.

We discuss a less simplistic, simulation-based analysis in the next

section.

0

Here we have used standard formulas for this simple channel.

A e'x2 code will suffice to suppress intersymbol interference when a
(?+I) code does.
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IV. Simulation Experiments

M. A. Kamil has conducted a series of simulation experiments comparing*

a number of M'ary systems. In order to preserve comparability with the

binary DPSK experiments reported in [1] and [2], a data rate of R = 787 kbps

was set as a design pdrameter the so-called "high rate" case of [1] and

[2]). The systems were desiqned for- 5 ,s, typical of urban/suburban

multipath. Thus - 4.

4.1._ Sirdl Structures

4.11 M+Nj_ Cod irn **

From Figure 7, we see that the best (M+N) code is a (3+2) code. If
we want to have r , we should use a (2+3) code, which has only a

slightly shorter, recycle time (3/R vs 3.17/R) than a (3+2) code. However,

a three-replacement-symbol alphabet is relatively complex to implement,

requiring a three-symbol memory at transmitter and receiver and a

complicated coding/decoding table. In addition, there are major possibilities

for error propagation if only a binary decision is used, while substantial

additional errors are introduced if a 5'ary decision is used. We were

therefore led to prefer a (4+1) code (M = 22), the (M+N) code originally

proposed by Leung [7]. The recycle time of this code is only 2/R, but

it would seem to be less prone to additional receiver errors whether either

4'ary or 5'ary decisions are used.

Since asymmetric codes seem better than symmetric ones (e.g., (2+1)

code ] of Figure 8 is better than (2+1) code #2), we use the coding/

decoding scheme proposed by Leung in his original paper [7], as shown in

Figure 9.

This code has properties similar to the (2+1) code #1 of Figure 8,

e.g., correct reception of an A or an E always results in a correct

decoding, regardless of whether the previous decision was correct or not.

As indicated above, we test both quaternary and quinternary decision

strategies. In the latter case, we follow the protocol:
AA will always be decoded as 00

BB will always be decoded as 00

CC will always be decoded as 01

DD will always be decoded as 10
EE will always be decoded as 10

To be more fully described in Kamil's forthcoming doctoral thesis.

The best MxN code is a 2x4 code, requiring 3 more signals than the (3+2)
code and being much more complicated to realize. We therefore did not
simulate MxO codes. 31
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This corresponds to Case 3 of the analysis of the previous section.

The (4+1) code chosen, when run at 787 kbps, has symbol length of

T = 2.54 ps. Again to preserve comparability with the previous binary

* experiments, we have chosen the same processing gain, TW = 127. Thus,

the basic resolution element (or "chip" in the 127-chip PN sequence we

use) is 20 ns long. We therefore modified the multipath simulation

package, whose resolution is 100 ns, by dividing each of its l00-ns bins

* into five 20-ns sub-bins and assigning paths to sub-bins in the manner

described in Section VI.C of [1].

As indicated in our previous discussion, DPSK is obviously no longer

applicable; we need uniformly quasi-orthogonal signals that satisfy (1)

0 and (2). We should choose signals for which the inequality of (2) is a

great as possible for all T. Gold codes [9] seek to achieve this goal,

but are more complicated than desirable for our simulations. For

convenience (and, it turns out, without great loss), we therefore used

We could equally well have preserved the previous bandwidth, W 100 MHz,
leading to a processing gain TW = 254.

-32-
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frequency-shifted MLSR codes of 127-chips length; these are probably not

desirable for practical application because of poor data security, however.

In discrete-time form, let {S k127, = +1, be a 127-chip MLSR code.

Then a frequency-shifted version of this code is

s )27jki 2r 127 (2
r 127 {kki7 27

{Sik k=l {S ek= l  (52)

where j = v-l and i = 1,2,...,126. We are interested in the discrete-time

cross-correlation functions

127 )
mn( = S Smk Sn,kZ (53)

k=l

and require, in analogy with (1), (2) and (3) that

* mn(<) < 127 (54)

for all m t n and for Z 0 when m = n.

Since NO = {SkI is real-valued, so is p00(k); and, since 400(k)

is even, we see that its spectrum (i.e., discrete Fourier transform -DFT)

is real and even around zero frequency. Further, this DFT spectrum is

periodic, with period 127.

Now the DFT of On(Z) is that of %00(Z), shifted n frequency steps

(n/7 Hz) to the right. Since 00(k) is periodic and even, there are only

63 distinct shifts. Hence, there are only 63 frequency shifts of {Sk}

that yield distinct cross-correlation functions with {Sk}. Extending this

reasoning and noting that (because we use envelope detectors in our

receivers) only mnz()l has significance, one can easily see that of the

127 x 126/2 pairs of signals implied in (52), there are only 64 distinct

cross-correlation magnitude functions 1 mn(0)-

Kamil has examined all of these 64 functions. For the (4+1) code,

he then chose fSk ) and four of its frequency translates, such that the

six cross-correlation magnitude functions (not all necessarily distinct)

are among the "best" of the 64 available functions.

4.1.2. Standard M'ary Coding

In order to mitigate intersymbol interference with standard M'ary

coding, the symbol length 1og 2M/R must exceed A. Thus, we must have
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0

log 2M > RA = 4 so M > 16. We chose M = 16 for the simulation experiments.

Again we kept the same processing gain, TW = 127, as in the binary

* experiments. In particular, Kamil has used the 127-chip MLSR code
s 27 discussed above and fifteen of its frequency translates, chosen

so that the corresponding 120 cross-correlation magnitude functions (not

all distinct) are among the "best" of the 64 available cross-correlation

magnitude functions.

For a 16'ary code run at R = 787 kbps, T = log2M/R 5.08 js. The

chip length in a 127-chip code is then 40 ns. This is not a submultiple

of the lO0-ns bin length of the multipath simulation package, so the

sub-bin approach mentioned above (see Section VI.C of [1]) is not easily

applied. To ease this problem, Kamil therefore used 50-ns chips,

allowing exactly two sub-bins to a bin. This increases T to 6.35 ps

(and correspondingly decreases W so that TW remains 127) and we now have

R = I/T 630 kbps. Although the lower rate decreases intersymbol

interference slightly from that at the nominal 787 kbps, it is already

so small (since for both values of R, T > A) that the system performance

will surely change only negligibly. Thus, we feel that the 630-kbps

0 simulation results will closely represent the 787-kbps case and will be

comparable to other 787-kbps results.

4.2. Receiver Structures

The basic receiver structure used in Kamil's simulation is shown in
Figure 10. The received signal is passed through M' matched filters

(M' = M or M' = M+N) and M' envelope detectors. Each envelope detector

output is passed into a post-detection algorithm, which -- in Kamil's

experiments -- was one of the following:

" PDI

" Largest-path (LP) detection

" DRAKE

* RAKE

We must of course maintain the same transmitted enerry per bit for the
longer signals.

See [1]. Here we examine the output of each envelope detector, choose
the largest peak in each, and output the value of this peak. In our
simulations, for simplicity, we actually examined the outputs of all
detectors at the instant (known to the computer) at which the "correct"
matched filter output had its largest multipath response. This was an
ur, ';irable simplificatilon -- see below.
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The DRAKE and RAKE algorithms require path delay (and, for DRAKE, path

strength) estimates; the PDI and LP algorithms require only bit-sync

information.

The outputs of the algorithm circuits go into the decision circuit.

For standard Mary reception, this circuit identifies the largest of its

inputs and passes its index to its output. If the system uses an (M+N)'ary

commutation code with M'ary decision, the decision circuit looks only at

the M of its inputs that are currently "possible," identifies the

largest of these, and passes the corresponding index to its output. If

the system uses an (M+N)'ary commutation code with (M+N)'ary decision,

* the decision circuit looks at all of its inputs, identifies the largest,

and passes the corresponding index to its output.

For a standard M'ary system, the Mary-to-binary convertor does a

standard translation of its one-out-of-M input to log2M-bit binary words.

For an (M+N)'ary system with M'ary decision, the converter uses a

decoding table for Mary sequences such as that implicit in Figure 9. For

an (M .+N)'ary system with (M+N)'ary decision, the decoding table is

augmented by entries for "impossible" input sequences, such as the

conventions given in Section 4.1.1 for a (4+1) code.

In actuality, Kamil did not convert to binary. Instead, he compared

l'ary receiver outputs (including the use of the decoding table for

(M+4-)'ary systems, where the decoding is M'ary to M'ary) with M'ary

transmitter inputs. The linkage between M'ary probability of error and

binary probability of error was made on the basis of (15).

4.3. Results

-J,, results of the simulation are shown in Figures 11-24. All of

0lhesp jive the bit error probability PEB as a function of the average

energy per bit LOS received via the LOS (line of sight) path as normalized

o thr- channel noise power density N0.

Figures 11-17 give results for Area A, i.e., dense urban high rise

(,ee F]); for this area, the integration interval of the PDI receiver

was taken as 4 ,s. Figures 18-24 give results for Area 0, suburban/

residentiai_,e _ t he PDI integration interval was only 1 us since the

The circuit decides which inputs are possible on the basis of its
previ ous i decisions.

It would have been better to convert all the way to binary to verify
the v;ilidity of (15).
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typical multipath spread is quite small.

Figure 11 shows the Area-A performance of standard 16'ary receivers.

As expected, RAKE outperforms all other receivers. Importantly, and not

predicted by our simplified analysis (Section 2.2.3), PDI performs very

badly. Further, both it and DRAKE show a "bottoming out" behavior:

above a certain ELOS/NO, their performances first level off and then

deteriorate. This behavior is due to the presence of crosscorrelation

noise, and will be fully discussed below.

In Figure 11, we also have shown theoretical curves from Figure 5,

as modified using (15) to reflect bit error probability. Recall that

* Figure 5 is based on a much oversimplified model involving a fixed

number of independent, Rayleigh-fading paths having equal mean-square

strengths and signals with zero crosscorrelations and autocorrelation

sidelobes. (Under these assumptions, equal-weight combining is optimal,

* so DRAKE and RAKE are equivalent; the theoretical curves represent

either.) By contrast, our realistic simulation program generates a

random number of dependent, log-normally fading paths having unequal

mean-square strengths and uses signals with substantial crosscorrelation

and autocorrelation sidelobes. As we have seen before in Section VI.D

of [1], the theory is far too optimistic: in Figure 11 the K = 20
theoretical curve is about 10 dB optimistic, even though the simulated

multipath has an average of about 23 paths per profile. The K = 4

theoretical curve is a better fit -- i.e., ideal signals (without

autocorrelation sidelobes and with zero cross-correlations) transmitted

through four equal-strength, independent, Rayleigh fading paths would

perform about as well as the real-life situation we have simulated.

Recall from Section 2.2.3 that we have estimated PDI to perform

2-5 dB worse than DRAKE. We see that this estimate is more or less

correct for small 9 LOS/No. But as FLos/No becomes larger, so that

crosscorrelation noise dominates channel noise (see discussion below),

the estimate becomes worthless. This is because the estimate is based

only on the effects of additional channel-induced noise at the receiver

output caused by "turning spurious taps on;" we did not at all consider

cross-correlation noise, and this type of noise becomes dominant at

large LOS/No.

Figures 12 and 13 show the simulated results for (4+l)'ary signalling

with 4'ary and 5'ary decisions, respectively. In Figure 12, the theoretical

K=4 curve (from Figure 3) is again much closer to real life than the K=20
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curve; K = 3 would be closer still. We have not drawn theoretical

curves in Figure 13, since the theory of Section 2.2.2 does not model

decision anong five matched filter outputs of which only four may have

signals.

Figures 14-17 compare the performances of the three different

M'ary signalling schemes for each of PDI, LP, DRAKE and RAKE reception.

We see that 16'ary signalling outperforms (4+l)'ary signalling in all

cases, as is expected, since M'ary signalling gets more efficient as M

increases. We also see that 5'ary decisions are more effective than

4'ary decisions: adding another (perhaps totally spurious) candidate

to the decision algorithm more than compensates for the error propagation

that would occur if that candidate were excluded. We have see this

effect theoretically in Table I of Section 3.3.3.

We have also drawn in Figures 16 and 17 the curves for high-rate

(787- kbps) DRAKE and RAKE reception of binary DPSK signalling, as given

in 11 and [2]. (Binary PDI and LP receivers are not practicable at

7i7 ktPs because of intersymbol interference.) Note that at small

1OS!/N, binary DPSK is slightly better than 16'ary quasi-orthogonal

keying. This is because, although 16'ary orthogonal keying is better

than binary orthogonal keying, binary DPSK has approximately a 3-dB

ddvantage over binary orthogonal keying, which compensates for the

advantage of 16'ary keying. (In addition, our 16'ary keying is only

quasi-orthogonal, so its performance is further deteriorated by cross-

currelation noise.) As 7jLOS/No increases, intersymbol interference --

present in the high-rate binary system, but virtually absent in ou,"

16'ary system -- causes the binary system to lose its advantage. However,
f v n larger Los/No, when cross-correlation noise dominates the

charnel noise in 16-ary DRAKE, the binary system again becomes better.

There i, evidence in Figure 17 that this crossover will occur also for

as should be expected, since cross-correlation noise effects RAKE

also.

Figures 18-24 repeat the curves of Figures 11-17 in the same

sequence, but for Area D (suburban/residential). We have not attempted

to draw theoretical curves in Figures 18 and 19 since in Area D one

path usually dominates; i.e., we cannot even approximately say that

there are effectively K equal-strength paths (K>l) and use Figures 3

and 5.
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We see from Figures 18-20 that, as in Area A, for each signalling

scheme the receivers are ranked PDI, LP, DRAKE, RAKE in order of

* increasingly better performance. Although the PDI curves all bottom

out, the DRAKE curves do not, at least in the range of PLOS/No shown.

This is because cross-correlation noise, arriving via fewer paths, is

not as much a problem as in Area A; we discuss this point further below.

0 Figures 21-24 show that 16'ary signalling is still better than

(4+l)'ary. Again, when (4+l)'ary signalling is used, 5'ary decisions

are better than 4'ary decisions. In Figures 23 and 24, where high-rate

binary DPSK curves from [1] and [2] are displayed, we again see that

0 binary DPSK is better than 16'ary quasi-orthogonal keying for small

LOS/pO, but loses its advantage as LLOS/NO increases, when intersymbol

interference begins to affect it. We suspect that there is an other

crossover for even larger PLOS/No$ as cross-correlation noise begins to

dominate 16'ary reception, but the crossover is not apparent in

Figures 23 and 24, since cross-correlation noise is not as important

in Area P.

4.4. Discussion of Cross-correlation Noise

We now discuss the concept of cross-correlation noise more fully,

since it is a major theme in understanding the performance of M'ary

receivers (M>2). We have already seen in connection with Figure 1 that,

when the bank of matched filters of Figure 10 is hit by the output of

the multipath channel, all respond. The output of the filter matched

to the transmitted signal (the "correct" filter) has a multipath peak

plus autocorrelation sidelobes present for each path; each peak shows

distinctly, but the sidelobes due to different paths overlap and add.

The otLer filters respond with the cross-correlation function between

the transmitted signal and the signals to which they are matched. The

f ross-correlation response occurs once for each path, since the

transmitted signal arrives multiple times; as with the autocorrelation

sidelobes in the "correct" filter's response, these cross-correlation

responses overlap and add.

Figure 25 shows a computer printout of actual matched filter output

envelopes from the simulation experiments. Here, the signalling is

stopped toward the end, so it is possible to view only the channel noise

as well as the autucorrelation noise. In Figure 25, LOS/No 20 dB.
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In order to appreciate the scales of figures 1 and 25, note that

if a multipath peak at the output of filter k has height 1, the rms

value of its sidelobes at filter k's output will be of the order of

1/vW ' 0.089 or -21 dB in our case of TW = 127). The cross-correlation

functionis this path induces in the other filters' outputs will also

have rms values of the order of 1//W. If there are K paths of more or

less equal strength, each will contribute autocorrelation sidelobes and

cross-correlation functions ofrms value I/svW, and these will add rms-wise

to cumulate rms totals of AK/TW.

Suppose that there are indeed K paths of more or less the same average

strength as the LOS path. The rms values of the autocorrelation and

cross-correlation noises in the matched filter outputs will then be down

from the multipath peaks in the "correct" filter's output by a factor

of the order of vYIW/K. From matched-filter theory, we know that the rms

value of the noise in the filter outputs, due to channel noise, will be

down fron the peaks by a factor of V2ZLOS/N 0 * Then, if 2ZLOs/N 0 > TW/K,

the correlation noise will dominate the channel noise.

For example, consider Area A, where there is an average of about

20 paths of significant strength per profile, or the equivalent of perhaps

K = 10 paths of more or less equal average strength. For our case of

Th = 127, correlation noise will dominate when Los/No > 127/20 8 dB.

Again, in Area D, where there is the equivalent of only K = 1 equal-

strength path, correlation noise will dominate when LOS/No > 127/2

1S dB.

Indeed, we see from Figures 14 and 21 that PDI performance begins

to 'bottom out" -- i.e., the curves start to have an upward curvature --

a*Los/No = 8 and 18 dB respectively in Areas A and D. That is, above

these values of SNR, further decreases in channel noise will become less

and less significant as the constant-level correlation noise more and

ilore controls performance. In fact, we see that there is a slight

deterioration of performance (increase in PEB ) as the rms value of the

total correlation plus channel noise decreases. This is probably due to

a change in distribution of the total noise: for small SNR, the channel

In our discussion of Figures 11 and 12, we saw that this was equivalent
to about four equal-strength, independent, Rayleigh paths when the signals
generate no correlation noise. But the number K = 10 is a more appropriate
number in the present discussion.
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noise dominates, and the total noise output is essentially Gaussian.

For large SNR, correlation noise dominates, and this may well have

somewhat non-Gaussian distribution tails, controlled by the statistics

of the iultipath, leading to a larger PEB for a given rms value

thin would Gaussian tails.

The "bottoming out" phenomenon just described shows up uniformly for

all Mary PDI receivers in Areas A and D at the predicted values of SNR.

Since the argument that led to the prediction of the phenomenon did not

refer to the type of receiver or the Area, one would expect it to hold

fm all Areas and receivers and for all M, even M = 2. (In the M = 2

case we have considered, DPSK is used, which involves only one matched

filter and therefore only auto-correlation but not cross-correlation

noise.) Surprisingly, "bottoming out" is clearly present in only one

other curve in Figures 11-24, that for 16'ary DRAKE in Area A. This

discrepancy between prediction and results arises because the argument

oredioting domination by correlation noise is somewhat oversimplified and

because there are artifacts of the receiver simulations used that modify

our conclusions.

For example, the LP receiver nominally seeks the value of the largest

peak in the output of each matched filter. The simulation routine was

plified by assuming that this peak occurs at the "correct" filter's

Output at the time instant when the largest path's response would peak

,itnut noise; as in the binary case [1], this is not a bad approximation

- tbe "correct" filter. Unfortunately, for further simplicity in the

;imulntion, the other M-l outputs were also sampled at the same time,

ratn:r tnan at the various (different) instants where each filter's

;.duuk naks. Sampling all outputs at the instant that the correct filter's

output eaks is the worst possible choice since, for the signals chosen,

(0' - 0 in (53) for all m / n. This means that, when sampling all

r utptts at the time of the largest path (when the correct filter

output, its largest peak), the cross-correlation noise induced by this

lurgest path in all M-l "incorrect" filters is exactly zero. Since the

largest path contributes a very large fraction of the cross-correlation

nois (recall that the paths are presumed to be more or less of equal

-;trenqth only on the average, and even this is an oversimplication since

one path usually dominates all others even on the average), we have wrongly

suppressed in our simulation a substantial part of the correlation noise.
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Indeed, in Area D, where there may be only one path, we have suppressed

virtually all correlation noise. In other words, instead of sampling the

S!arjst - values of cross-correlation noises in all of the M-1 "incorrect"

filters, we have in our simulation likely sampled the smallest! The "bottoming

out" pnenoiienon is thus artificially suppressed for LP receivers, at least

in the SNR range we have investigated, although a slight upward inflection

* indicates its presence in the Area A curves.

for DRAKE, we see that "bottoming out" occurs for Area A, but not

ocr ,rea . Recall that the DRAKE receiver has a tapped delay line at the

o-t:ct of each matched filter's envelope detector; a tap is turned on for

,cach :;atn whose strength lies above a threshold that is at roughly the

r':., channel noise level. Thus, in Area A there are many taps turned on,

at eac of wvhich appears substantial correlation noise from paths with

ielays corresponding to other taps; "bottoming out" occurs as predicted

ir Area, A DRAKE performance.

However, as in the LP receiver, because mn (0) = 0 in (53) for all

1: / v, a path inducing a multipath peak at a given tap at the "correct"

filter's output will induce no cross-correlation noise at the same tap

* at other filters' outputs. Thus, in Area 0, where there is typically

only one dominant path and perhaps only not even one other path above

threshold, there is considerably less cross-correlation noise than

predicted by the simplified theory or perhaps none at all; "bottoming

oCut" will occur at a very much greater SNR than encompassed in our

graph '.

Again, in a RAKE receiver, since tap gains on the delay line are

idju'ted to be equal to the associated path strengths, the largest

* ,,,tenLial component of correlation noise -- that from the strongest path --

is given the largest weight; and, since Omn(O) = 0 for all m t n, that

c,!)'4)onent is zero. Again, our theoretical prediction is oversimplified.

We soi! that only a slight upward inflection in the RAKE curves for

Area A hints at the "bottoming out" phenomenon, and not even this hint

appears in Area D.

in sum, we see that our theoretical analysis of "bottoming out" --

whicn is based on a stationarity assumption on the correlation noise --

is momt accurate for PDI receivers, which view large numbers of samples

of correlation noise. The prediction is less and less accurate for

WRAKE, RAKE and LP receivers, which view successively fewer samples

(and in the LP case, a decidedly atypical sample) of the noise.

-57-



V. Discussion

The main results of our simulation experiments are twofold:

B Iinary DPSK with RAKE or DRAKE performs as well as or better

than any of the M'ary systems we have considered, even though

binary transmission involves substantial intersymbol inter-

ference in the high-rate case.

PDI reception, which offered hope for a simplified M'ary

receiver in which intersymbol interference could be avoided,

is distinctly not a viable choice.

We are thus left to a choice between binary and M'ary RAKE (or perhaps

flRAKE, although DRAKE is more susceptible to correlation noise.)

The choice between binary and M'ary RAKE is a ,ubtle and complex

one, irvjvlving the following issues.

*I As M increases, the number of matched filters and RAKE algorithm

circuits in Figure 10 increases, but the channel estimator, which

urovides path strength/delay estimates to the algorithm circuits,

becomes simpler. On the other hand, in the binary case there is
only one matched filter and algorithm circuit, but the estimator

structure becomes more complex [2]. There is thus a system

complexity trade-off between binary and M'ary.

(2) Even in the M'ary case, there is a choice between standard

coding (say 16'ary) and commutation coding (say (4+l)'ary). Here,

choice of commutation coding reduces complexity but involves a

power penalty.

(3) M'ary signalling involves a log2M-to-I reduction of bandwidth
f,'r the same processing gain TW, or a log2M-to-l increase in

processing gain for the same TW product.

LP reception might also be a viable choice in the Wary case. However,
because of the unfortunate assumption used in our LP simulation, discussed
in Section 4.4, our simulation curves for LP reception are quite
optimistic. Since even these curves are at least 5 dB worse in Area A
than RAKE curves, we suspect that LP reception with Wary signalling is
also not a satisfactory choice.

The algorithm circuits can be passive (i.e., tapped delay lines as in
[1]) or active (real-time multiplication of the matched-filter output
Pnvelopes by the estimated multipath profile).
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(4) While our simulation results have shown that 16'ary and binary
RAKE systems perform more or less equivalently, one suspects that

16'ary systems are more susceptible to correlation noise from other

systems operating in the same band. This conjecture is not a

sure one; to the extent that inter-system correlation noise looks

exactly like channel noise at all matched-filter outputs, it simply

reduces the effective PLOS/No in any one system by an amount that

is independent of M. To the extent that signal structures and

channel fading statistics make inter-system noise look different

from channel noise, it may be that systems with different M are

differently affected.

Issue (1) is the subject of a concurrent study. Issues (2) and (3)

are a matter for the system designer's judgement. Issue (4) has been

proposed for further study.

-
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Appendix: Calculations of Prob(no decoding correction/E - E)

There are six possible transmitted signal pairs, AB, AC, BA, BC,

CA, CB, each having probability I of occurring. The possible6 ccrrin. Th posibledouble-

error patterns are:

Transmitted pair Binary or ternary decisions Only ternary decisions

AB BA, C, CC

AC BA, CA, L BB(case 3)

BA AB, AC, CB CC

BC AB, CA, CB AA

CA AB, AC, BC BB

CB AC, BA, BC AA

In this table, the underlined errors lead to a corrected decoding using

code #1 of Figure 8; the overlined errors lead to a corrected decoding

using code #2; the AC -- BB error is correctly decoded only when code #1

is used with ternary decisions and BB is decoded as a 1 (case 3, p.24 ).

We now calculate Prob(no decoding correction/double error) for the

three cases listed on page 24 (code #1) and the two cases listed on

page 28 (code #2).

Case 1: Here, the probability of an error pattern depends on whether or

not the first error precludes the actually transmitted second signal

from being considered on the second decision. This is the case for the

error pairs AB - BA, AB -C-, AC - CA, AC - B, BA - AB, BA -A-C,

BC - tCA, BC - CB, CA - AB, CA - AC, CB -TBA, CB - BC. The probability

of each of these error pairs, given that there is a double error,is Ix

(the prob. of the transmitted sequence) x 1 (the prob. that the first

error is what it is) x (the prob. that the second error is what it is)
1
a 1 If the first error does not preclude the actually transmitted

second signal from consideration on the second signal (AB - U, AC -A-,
BA -* l, BC All, CA -ITB1, CB -+ Ar), the probability of the double error
.l 1 *

is 6 x z x 1. Thus, for code #1, the probability of a decoding

If the correct signal is one of the two under consideration, there is
only one way of making the second error.
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64 2..5
correction, given that there is a double error is 6+ 2 = 52, whence

Prob(no dec. corr./E - E) = -. On the other hand, for code #2,
l

Prob(no dec. corr./E - E) = 1

Case 2: Here, the probability of every error pair, given that there is a

double error, is -L . Thus, for code #1, Prob(no dec. corr./E - E)24
8 24 3 for code #2, Prob(no dec. corr/E -+ E) = 1 - L2

Case 3: For code #1, there is one more way of correcting an error

(AC-*BB), so Prob(no dec. corr./E -+ E) 
= 1 9 15
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